International Journal of Corrosion
 Journal metrics
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore2.700
Journal Citation Indicator0.220
Impact Factor-

In Situ Monitoring of Corrosion under Insulation Using Electrochemical and Mass Loss Measurements

Read the full article

 Journal profile

International Journal of Corrosion publishes research dedicated to understanding, managing, and preventing corrosion in all its manifestations. The journal welcomes the submission of both fundamental and highly applied studies.

 Editor spotlight

International Journal of Corrosion maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Evaluation of Electrochemical and Anticorrosion Properties of Polyaniline-Fly Ash Nanocomposite

In India, the thermal station generates approximately tons of fly ash (FA) as a waste by-product. As part of this work, little attempt was made to produce useful materials from waste material. In our current research, polyaniline- (PANI-) fly ash (FA) nanocomposite (PFNC) was synthesized using an in situ polymerization method. The synthesized composites were characterized by employing advanced analytical, microscopic, and spectroscopic tools. The results of the X-ray diffraction (XRD) analysis confirm the effective reinforcement of FA into PANI in PFNC. The presence of functional groups in PFNC has been confirmed by Raman and FT-IR spectroscopic techniques. The SEM micrographs of the nanocomposite revealed the presence of agglomerated and fragmented structures in PFNC. The weight loss for PFNC was observed to occur in three stages as revealed by thermogravimetric analysis (TGA). UV-visible spectra for PFNC proved that FA stabilized the PANI in emeraldine form. Electrodynamic polarization studies were conducted to explore the corrosion resistance of nanocomposite-coated mild steel. The corrosion current density () for PFNC-coated mild steel (MS) specimens was found to decrease when compared to the bare substrate, indicating superior corrosion resistance in PFNC-coated substrate. Similarly, Tafel and cyclic polarization studies too confirmed superior anticorrosion property for MS coated with PFNC.

Research Article

Heat Treatment Effect in the Corrosion Resistance of the Al-Co-Mn Alloys Immersed in 3 M KOH

Al-based alloys named M1, M2, M3, M4, and M5 doped with different atomic percentage (at%) of cobalt and manganese as cast and submitted at two heat treatments (600°C and 1100°C) were analyzed by using electrochemical techniques to evaluate their corrosion resistance immersed in 3 M KOH. With the heat treatments applied to the alloys, the sample M2 (65% Al, 20% Co, and 15% Mn) observed the highest corrosion resistance with values of , , and as cast, 600°C, and 1100°C, respectively. The latter was in agreement with the calculated from the polarization curves where the values decrease based on the heat treatment applied as follows: for 1100, 600, and as cast, respectively. Co concentration above 20% increases the corrosion current () and decreases the polarization resistance of the remain samples. The chemical analysis done with EDS and X-ray diffraction made confirmed the presence of compounds such as CoAl, Co2Al5, Co2Al9, MnAl4, and MnAl6.

Research Article

Strength of Vegetated Coal-Bearing Soil under Dry-Wet Cycles: An Experimental Study

Strength of vegetated coal-bearing soil is of great significance to evaluate the shallow stability of vegetated slopes in coal-bearing soil regions. This paper takes D-W cycles, dry density, water content, and vegetation root (VR) content as four factors and carries out the triaxial test for the orthogonal design of vegetated coal-bearing soil in southern China. The strength curves of vegetated coal-bearing soil under four factors were obtained. The Taguchi method was used to quantitatively analyse the effects of four factors. The microstructure of coal-bearing soil under D-W cycles and the theory of soil reinforcement by VR were discussed. The results indicated that D-W cycles had a significant effect on the cohesion and internal friction angle (). The internal friction angle was little affected by the water content and VR content, which had considerable influence on the cohesion. The cohesion could be improved with less than 2% VR content. The cohesion was the largest for no D-W cycles, 10% water content, and 2% VR content. The links between mineral particles go from a stable layered structure to unsteadiness chain structure with the increase in the number of D-W cycles.

Research Article

Evaluation of Corrosion Inhibition Efficiency of Aluminum Alloy 2024 by Diaminostilbene and Azobenzene Schiff Bases in 1 M Hydrochloric Acid

The Schiff base compounds N,N-bis(salicylidine)-4,4–diaminostilbene(SDS) and N,N-bis(salicylidine)-4,4-diamino azobenzene(SDA) were synthesized, and their molecular structure was determined by FT-IR and 1H NMR. The corrosion inhibitions of Schiff base compounds on aluminum alloy 2024 in 1 M hydrochloric acid were evaluated by potentiodynamic polarization, impedance techniques, weight loss method, and scanning electron microscopic technique. The potentiodynamic polarization (PDP) studies revealed that SDS and SDA compounds acted predominantly as cathodic inhibitors. The electrochemical impedance spectroscopic (EIS) parameters confirmed the adsorption of SDS and SDA molecules over the surface of aluminum alloy 2024 alloy by forming an inhibitive layer. The weight loss studies showed that the inhibition efficiency of these compounds increases directly with concentration and decreases with an increase in solution temperature and immersion time. The thermodynamic parameters were calculated to investigate the mechanism of corrosion inhibition. The SDA was found to be more effective than SDS and followed the Langmuir adsorption isotherm model. The scanning electron microscopy (SEM) results revealed that the deterioration of the alloy surface is minimal in the presence of an inhibitor. Both Schiff base molecules exhibited superior corrosion inhibition for aluminum alloy 2024 alloy in HCl medium.

Research Article

Effect of Alternating Stray Current Density on Corrosion Behavior of X80 Steel under Disbonded Coating

In this paper, the effect of alternating stray current (AC) density on the corrosion behavior of X80 steel under disbonded coating was studied by electrochemical methods, wire beam electrode (WBE) technology, and surface observation technology. The results showed that under the interference of different AC densities, the corrosion potential of X80 steel under disbonded coating underwent negative deviation, and the degree of negative deviation increased with the increase of AC density. The corrosion current density of X80 steel under disbonded coating with the action of 0~100 A/m2 AC density had few differences. While the corrosion current density of X80 steel with the action of 200~300 A/m2 AC density increased and the corrosion current density was higher than that under low AC density. The cathode area of the wire beam electrode under disbonded coating is mainly distributed outside and the edge of the gap between disbonded coating and X80 steel, while the anode area is mainly distributed inside the gap.

Research Article

Investigation of Corrosion Protection of Austenitic Stainless Steel in 5.5 M Polluted Phosphoric Acid Using 5-Azidomethyl-7-morpholinomethyl-8-hydroxyquinoline as an Ecofriendly Inhibitor

The use of 5-azidomethyl-7-morpholinomethyl-8-hydroxyquinoline (AMH) as a corrosion inhibitor for AISI 321 stainless steel in 5.5 M polluted phosphoric acid was investigated using the hydrogen evolution technique, linear polarization curves, and impedance spectroscopy. Impedance measurements revealed that the dissolution of AISI 321 in 5.5 M polluted phosphoric acid was controlled by an activation mechanism, unchanged even with the addition of AMH at different concentrations. Polarization results showed that the inhibition ability was enhanced with increasing inhibitor concentration. AMH acted as a mixed-type inhibitor by random adsorption on the alloy surface, whatever the nature of the reaction that is taking place. The adsorption of AMH on the AISI 321 surface was also discussed via the Langmuir adsorption isotherm. The influence of elevating the solution temperature on the corrosion inhibition performance was studied. A quantum chemistry study with the DFT method was also conducted, which supplied a logical and exploitable theoretical explanation of the adsorption and the inhibition action of AMH on AISI 321.

International Journal of Corrosion
 Journal metrics
Acceptance rate-
Submission to final decision-
Acceptance to publication-
CiteScore2.700
Journal Citation Indicator0.220
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.