International Journal of Microbiology
 Journal metrics
Acceptance rate20%
Submission to final decision94 days
Acceptance to publication32 days
CiteScore3.000
Journal Citation Indicator0.610
Impact Factor-

Indexing news

International Journal of Microbiology has been accepted into Food Science & Technology Abstracts.

Go to Table of Contents

 Journal profile

International Journal of Microbiology publishes papers on microorganisms and their interaction with hosts and the environment. The journal covers all microbes, including bacteria, fungi, viruses, archaea, and protozoa.

 Editor spotlight

Chief Editor, Professor Urakawa, is currently based at Florida Gulf Coast University as Professor of Marine and Ecological Sciences and has a background in Environmental Microbiology and Microbial Ecology.

 Special Issues

We currently have a number of Special Issues open for submission. Special Issues highlight emerging areas of research within a field, or provide a venue for a deeper investigation into an existing research area.

Latest Articles

More articles
Research Article

Antimicrobial Resistance Patterns, Extended-Spectrum Beta-Lactamase Production, and Associated Risk Factors of Klebsiella Species among UTI-Suspected Patients at Bahir Dar City, Northwest Ethiopia

Introduction. Klebsiella species cause pneumonia, UTI, and septicemia in human beings. Beta-lactam drugs are used extensively to treat patients infected with Klebsiella, but most of the Klebsiella species are resistant to third- and fourth-generation cephalosporins and monobactams to which data are scarce in the study area. Objective. To determine the prevalence, antimicrobial resistance, ESBL production, and associated risk factors of Klebsiella species among UTI-suspected patients in Bahir Dar City, Northwest Ethiopia. Methods. A multi-institution-based prospective cross-sectional study was conducted from January to May 2019. Midstream urines were collected from 385 patients and inoculated onto CLED and MacConkey agars. Identification of growth was done by a battery of biochemical tests. Antimicrobial resistance and ESBL production patterns were determined by using the disc-diffusion method on Mueller–Hinton agar. Quality of data was maintained by following SOPs and using Klebsiella pneumoniae (ACTT700603). Logistic regression statistical analysis was done using the SPSS, version 25, statistical package. A value ≤ 0.05 was considered statistically significant. Results. The median age of the study participants was 32 years. Majority of them were female, urban residents, and unable to read and/or write. The total Klebsiella species detected were 38 (9.9%). Of which, 25 (65.8%) were Klebsiella pneumoniae, followed by 6 (15.8%) Klebsiella ozaenae. 20 (80%), 19 (76%), and 19 (76%) Klebsiella pneumoniae showed resistance to amoxicillin/clavulanic acid, ampicillin, and cotrimoxazole, respectively. All K. oxytoca were resistant to ampicillin, and all K. rhinoscleromatis were resistant to cefoxitin and cefotaxime. Klebsiella species that showed resistance to ≥3 antimicrobials were 26 (68%). ESBL-producing Klebsiella species were 10 (26.3%). Patients who had history of antibiotic use, hospitalization, and tight dressing habit had more risk of getting UTI () than their counterparts. Conclusions. Overall UTI prevalence in our study was lower than that of previous Ethiopian studies. High MDR and ESBL-producing Klebsiella species were detected. Patients’ history of antibiotic use, hospitalization, and tight dressing habit were risk factors for UTI. It calls up for improving prevention/control systems of Klebsiella species.

Review Article

Cellulosic Ethanol Production Using a Dual Functional Novel Yeast

Reducing the cost of cellulosic ethanol production, especially for cellulose hydrolytic enzymes, is vital to growing a sustainable and efficient cellulosic ethanol industry and bio-based economy. Using an ethanologenic yeast able to produce hydrolytic enzymes, such as Clavispora NRRL Y-50464, is one solution. NRRL Y-50464 is fast-growing and robust, and tolerates inhibitory compounds 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) associated with lignocellulose-to-fuel conversion. It produces three forms of β-glucosidase isozymes, BGL1, BGL2, and BGL3, and ferment cellobiose as the sole carbon source. These β-glucosidases exhibited desirable enzyme kinetic parameters and high levels of enzyme-specific activity toward cellobiose and many oligosaccharide substrates. They tolerate the product inhibition of glucose and ethanol, and are stable to temperature and pH conditions. These characteristics are desirable for more efficient cellulosic ethanol production by simultaneous saccharification and fermentation. NRRL Y-50464 provided the highest cellulosic ethanol titers and conversion rates at lower cellulase loadings, using either pure cellulose or agricultural residues, as so far reported in the literature. This review summarizes NRRL Y-50464 performance on cellulosic ethanol production from refined cellulose, rice straw, and corn stover processed in various ways, in the presence or absence of furfural and HMF. This dual functional yeast has potential to serve as a prototype for the development of next-generation biocatalysts. Perspectives on continued strain development and process engineering improvements for more efficient cellulosic ethanol production from lignocellulosic materials are also discussed.

Research Article

Prevalence and Antimicrobial Resistance of Bacteria Isolated from Marine and Freshwater Fish in Tanzania

This study aimed to determine the prevalence and antimicrobial resistance of bacteria isolated from retail fish and shrimp in Tanzania. A total of 92 fish and 20 shrimp samples were analyzed. Fish samples consisted of 24 Nile tilapia, 24 Nile perch, and 24 red snapper. The isolates were identified by their morphological characteristics, conventional biochemical tests, and analytical profile index test kits. The antibiotic susceptibility of selected bacteria was determined by the disc diffusion method. Out of the 92 samples analyzed, 96.7% were contaminated with 7 different bacterial species. E. coli was the most prevalent bacteria (39%), followed by Klebsiella spp. (28%) and Salmonella spp. (16%). Other species isolated from this study were Staphylococcus spp. (8%), Citrobacter (4%), Shigella spp. (3%), and Pseudomonas spp. (1%). All samples were analyzed for Campylobacter spp.; however, none of the samples tested were positive for Campylobacter spp. Fish from the open-air market were contaminated by six bacterial species: E. coli (40%), Klebsiella spp. (26%), Salmonella spp. (24%), Shigella spp. (6.7%), Citrobacter spp. (6.5%), and Pseudomonas spp. (2%), while E. coli (37%), Klebsiella spp. (33%), Staphylococcus spp. (23%), and Shigella spp. (2%) were isolated in supermarket samples. According to the International Commission on Microbiological Specifications for Foods criteria, 54 (58.7%) and 38 (41.3%) samples were good and marginally acceptable, respectively. E. coli isolates were resistant to penicillin (PEN), erythromycin (ERY), gentamicin (GEN), azithromycin (AZM), and tetracycline (TET), while Salmonella spp. isolates exhibited resistance to gentamicin (CN), tetracycline (TET), penicillin (PEN), and erythromycin (ERY). These results suggest that the presence of these bacteria might cause a health risk/hazard to human beings and may cause disease to susceptible individuals, especially immune-compromised consumers.

Research Article

Isolation and Characterization of Diesel-Degrading Bacteria from Hydrocarbon-Contaminated Sites, Flower Farms, and Soda Lakes

Hydrocarbon-derived pollutants are becoming one of the most concerning ecological issues. Thus, there is a need to investigate and develop innovative, low-cost, eco-friendly, and fast techniques to reduce and/or eliminate pollutants using biological agents. The study was conducted to isolate, characterize, and identify potential diesel-degrading bacteria. Samples were collected from flower farms, lakeshores, old aged garages, asphalt, and bitumen soils and spread on selective medium (Bushnell Haas mineral salt agar) containing diesel as the growth substrate. The isolates were characterized based on their growth patterns using optical density measurement, biochemical tests, and gravimetric analysis and identified using the Biolog database and 16S rRNA gene sequencing techniques. Subsequently, six diesel degraders were identified and belong to Pseudomonas, Providencia, Roseomonas, Stenotrophomonas, Achromobacter, and Bacillus. Among these, based on gravimetric analysis, the three potent isolates AAUW23, AAUG11, and AAUG36 achieved 84%, 83.4%, and 83% diesel degradation efficiency, respectively, in 15 days. Consequently, the partial 16S rRNA gene sequences revealed that the two most potent bacterial strains (AAUW23 and AAUG11) were Pseudomonas aeruginosa, while AAUG36 was Bacillus subtilis. This study demonstrated that bacterial species isolated from hydrocarbon-contaminated and/or uncontaminated environments could be optimized to be used as potential bioremediation agents for diesel removal.

Research Article

High-Resolution Melting Analysis to Detect Antimicrobial Resistance Determinants in South African Neisseria gonorrhoeae Clinical Isolates and Specimens

Background. Antimicrobial resistance is limiting treatment options for Neisseria gonorrhoeae infections. To aid or replace culture and the syndromic management approach, molecular assays are required for antimicrobial susceptibility testing to guide appropriate and rapid treatment. Objective. We aimed to detect single-nucleotide polymorphisms and plasmids associated with antimicrobial resistance from N. gonorrhoeae isolates from a clinic population in South Africa, using real-time PCR as a rapid test for AMR detection. Methods. N. gonorrhoeae isolates, from female and male patients presenting for care at a sexually transmitted infections clinic in Durban, South Africa, were analysed using phenotypic and genotypic methods for identification and antibiotic susceptibility testing (AST). Real-time PCR and high-resolution melting analysis were used to detect porA pseudogene (species-specific marker) and resistance-associated targets. Whole-genome sequencing was used as the gold standard for the presence of point mutations. Results. The real-time porA pseudogene assay identified all N. gonorrhoeae-positive isolates and specimens. Concordance between molecular detection (real-time PCR and HRM) and resistance phenotype was ≥92% for blaTEM (HLR penicillin), rpsJ_V57M (tetracycline), tetM (tetracycline), and gyrA_S91F (ciprofloxacin). Resistance determinants 16SrRNA_C1192U (spectinomycin), mtrR_G45D (azithromycin), and penA_D545S, penA_mosaic (cefixime/ceftriaxone) correlated with the WHO control isolates. Conclusions. Eight resistance-associated targets correlated with phenotypic culture results. The porA pseudogene reliably detected N. gonorrhoeae. Larger cohorts are required to validate the utility of these targets as a convenient culture-free diagnostic tool, to guide STI management in a South African population.

Research Article

Molecular Epidemiology of Salmonella enterica in Poultry in South Africa Using the Farm-to-Fork Approach

The presence of the zoonotic pathogen Salmonella in the food supply chain poses a serious public health threat. This study describes the prevalence, susceptibility profiles, virulence patterns, and clonality of Salmonella from a poultry flock monitored over six weeks, using the farm-to-fork approach. Salmonella was isolated using selective media and confirmed to the genus and species level by real-time polymerase chain reaction (RT-PCR) of the invA and iroB genes, respectively. Antimicrobial susceptibility profiles were determined using Vitek-2 and the Kirby–Bauer disk diffusion method against a panel of 21 antibiotics recommended by the World Health Organisation Advisory Group on Integrated Surveillance of Antimicrobial Resistance (WHO-AGISAR). Selected virulence genes were identified by conventional PCR, and clonality was determined using enterobacterial repetitive intergenic consensus PCR (ERIC-PCR). Salmonella was present in 32.1% of the samples: on the farm (30.9%), at the abattoir (0.6%), and during house decontamination (0.6%). A total of 210 isolates contained the invA and iroB genes. Litter, faeces, and carcass rinsate isolates were classified as resistant to cefuroxime (45.2%), cefoxitin (1.9%), chloramphenicol (1.9%), nitrofurantoin (0.4%), pefloxacin (11.4%), and azithromycin (11%). Multidrug resistance (MDR) was observed among 3.8% of the isolates. All wastewater and 72.4% of carcass rinsate isolates were fully susceptible. All isolates harboured the misL, orfL, pipD, stn, spiC, hilA, and sopB virulence genes, while pefA, spvA, spvB, and spvC were absent. In addition, fliC was only present among the wastewater isolates. Various ERIC-PCR patterns were observed throughout the continuum with different subtypes, indicating the unrelated spread of Salmonella. This study concluded that poultry and the poultry environment serve as reservoirs for resistant and pathogenic Salmonella. However, there was no evidence of transmission along the farm-to-fork continuum.

International Journal of Microbiology
 Journal metrics
Acceptance rate20%
Submission to final decision94 days
Acceptance to publication32 days
CiteScore3.000
Journal Citation Indicator0.610
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.