Journal of Combustion
 Journal metrics
Acceptance rate21%
Submission to final decision67 days
Acceptance to publication29 days
CiteScore2.900
Journal Citation Indicator0.200
Impact Factor-

Dynamics of Thermoacoustic Oscillations in Swirl Stabilized Combustor without and with Porous Inert Media

Read the full article

 Journal profile

Journal of Combustion publishes research focusing on on all aspects of combustion science, both practical and theoretical. This includes, fuels, dentonators, flames and fires, energy transfer, physical phenomena and combustion chemistry.

 Editor spotlight

Journal of Combustion maintains an Editorial Board of practicing researchers from around the world, to ensure manuscripts are handled by editors who are experts in the field of study.

 Special Issues

Do you think there is an emerging area of research that really needs to be highlighted? Or an existing research area that has been overlooked or would benefit from deeper investigation? Raise the profile of a research area by leading a Special Issue.

Latest Articles

More articles
Research Article

Ash Evaluation of Indonesian Coal Blending for Pulverized Coal-Fired Boilers

Coal calorific value is one of the main considerations for using coal as a power plant fuel. In addition, the requirements for indications of slagging and fouling are also important to maintain combustion efficiency. However, coal power plants often experience problems in boiler operations due to the use of certain types of coal, even though they have a relatively high calorific value. This research investigates the effect of coal blending on ash fouling and slagging in an experimental investigation using a drop tube furnace with or without additives. Five different types of coal from different locations have been used in this study. Pulverized low-rank coal samples are burned in a drop tube furnace at 1,175°C with probe temperatures of 550°C and 600°C, corresponding to the combustion chamber of 600 MW power plants, including superheater and reheater areas. The ash particles’ characteristics and material composition were also analyzed using scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) and X-ray diffraction (XRD), respectively. All coal mixture combinations demonstrated potential as a fuel for power plants that use pulverized coal-fired boilers. Because of its capacity to reduce slagging and fouling potentials, combining coal blending with the use of chemical additives yielded the greatest results.

Research Article

The Modification of the Perforated Plate in the Fluidized-Bed Combustor to Analyze Heat Convection Rate and Temperature

Investigation of combustion temperature through experiments with a wide range of fuels, both solid and liquid, is continuously being conducted by scientists around the world, while the measurement of heat transfer rate can be analyzed when the combustion process occurs. Previous research has generally been conducted using liquefied gas, fossil fuels, and alcohol additives. Specifically, the research in this work investigated the convection heat rate and combustion temperature through the modification of the perforated plate. The experiment was conducted in the fluidized-bed combustor (FBC) fuel chamber using solid waste fuel of oil palm biomass. Measurements were performed at four different points using the HotTemp HT-306 Digital Thermometer. The results of the experiment showed that the convection heat rate in measurement one (M-I) reached 8.258 W/m2 for palm kernel shell (PKS) fuel. Meanwhile, in measurement two (M-II), the convection rate of 7.392 W/m2 was produced by oil palm midrib (OPM) fuel. The highest combustion temperature was recorded with OPM fuel (884°C) at M-I. However, the combustion temperature of the PKS combustion process is higher at 896°C but shows a less good trend than OPM. Overall, the measurement results of the three types of fuel used to modify the perforated plate applied in the FBC fuel chamber are excellent. It can be proven that the fuel is put into the combustion chamber with nothing left.

Research Article

Combustion Characteristics and NO Formation Characteristics Modeling in a Compression Ignition Engine Fuelled with Diesel Fuel and Biofuel

Compression ignition engine modeling draws great attention due to its high efficiency. However, it is still very difficult to model compression ignition engine due to its complex combustion phenomena. In this work, we perform a theoretical study of steam injection being applied into a single-cylinder four-strokes direct-injection and naturally aspirated compression ignition engine running with diesel and biodiesel fuels in order to improve the performance and reduce NO emissions by using a two-zone thermodynamic combustion model. The results obtained from biodiesel fuel are compared with the ones of diesel fuel in terms of performance, adiabatic flame temperatures, and NO emissions. The steam injection method could decrease NO emissions and improve the engine performances. The results showed that the NO formation characteristics considerably decreased and the performance significantly increased with the steam injection method. The relative errors for computed nitric oxide concentration values of biodiesel fuel and diesel fuel in comparison to the measured ones are 2.8% and 1.6%, respectively. The experimental and theoretical results observed show the highly satisfactory coincidences.

Research Article

Combustion Characteristics of Mui and Taru Basin Coal in a Fluidized Bed Combustor

Coal reserves at Mui and Taru in Kitui and Kilifi counties in Kenya are estimated to provide over 400 million tons. Being new discoveries, their properties were investigated using the ASTM standards, while the combustion characteristics were studied in a fluidized bed combustor (FBC). Proximate analyses of the Mui1, Mui2, and Taru coal samples were as follows: moisture content 3.75, 5.48, and 3.53%; volatile matter 59.25, 58.05, and 55.10%; ash content 9.25, 11.48, and 24.63%; and fixed carbon 27.80, 25.00, and 16.75%, respectively. Ultimate analysis for Mui1, Mui2, and Taru coal samples is as follows: sulphur wt.% 1.94, 1.89, and 1.07; carbon 65.68, 60.98, and 51.10%; hydrogen 5.97, 5.70, and 5.09%; nitrogen 0.92, 0.94, and 1.00%; and oxygen 11.62, 12.33, and 11.13%, respectively. Temperature–weight loss analysis showed that for Mui and Taru basin coal, devolatilization starts at 200°C and 250°C, and combustion was complete at 750°C and 650°C, respectively. The maximum temperature obtained in FBC was 855°C at 700 mm height, just above the point of fuel feed, while the minimum was 440°C at height of 2230 mm. Maximum pressure drop was 1.02 mbars at 150 mm, while minimum was 0.67 mbars at 700 mm from the base. Gross calorific values were Mui1 coal, 27090 kJ/kg (grade A), Mui2 coal, 25196 kJ/kg (grade B), and the Taru coal, 21016 kJ/kg (grade C). Flue gas analysis for Taru and Mui coal gave hydrogen sulfide as 20 ppm and 6 ppm, maximum carbon monoxide of 2000 ppm at 600°C, and a decrease in oxygen as combustion progressed to a minimum of 15%, followed by an increase to 20.3%, suggesting depletion of coal. Based on the findings, the coal samples were suitable for commercial use.

Research Article

Multiphysical Models for Hydrogen Production Using NaOH and Stainless Steel Electrodes in Alkaline Electrolysis Cell

The cell voltage in alkaline water electrolysis cells remains high despite the fact that water electrolysis is a cleaner and simpler method of hydrogen production. A multiphysical model for the cell voltage of a single cell electrolyzer was realized based on a combination of current-voltage models, simulation of electrolyzers in intermittent operation (SIMELINT), existing experimental data, and data from the experiment conducted in the course of this work. The equipment used NaOH as supporting electrolyte and stainless steel as electrodes. Different electrolyte concentrations, interelectrode gaps, and electrolyte types were applied and the cell voltages recorded. Concentrations of 60 wt% NaOH produced lowest range of cell voltage (1.15–2.67 V); an interelectrode gap of 0.5 cm also presented the lowest cell voltage (1.14–2.71 V). The distilled water from air conditioning led to a minimum cell voltage (1.18–2.78 V). The water from a factory presented the highest flow rate (12.48 × 10−1cm3/min). It was found that the cell voltage of the alkaline electrolyzer was reduced considerably by reducing the interelectrode gap to 0.5 cm and using electrolytes that produce less bubbles. A maximum error of 1.5% was found between the mathematical model and experimental model, indicating that the model is reliable.

Research Article

A Detailed Numerical Study of NOx Kinetics in Counterflow Methane Diffusion Flames: Effects of Fuel-Side versus Oxidizer-Side Dilution

Dilution combustion has been widely utilized due to various merits, such as enhanced efficiency, fewer pollutants emissions, and even a promising future in alleviating global warming. Diluents can be introduced through the oxidizer or fuel side to achieve the desired combustion properties, and H2O and CO2 are the most common ones. A comprehensive comparison between the different dilution methods still lacks understanding and optimizes the dilution combustion technologies. This study numerically compared the effects of H2O and CO2 dilution in the oxidizer or fuel stream on counterflow methane diffusion flames, emphasizing NO formation kinetics. Results showed that the impact of different radiation heat transfer models on NO emissions diminishes with increasing the dilution ratio. The calculations of radiation heat transfer were treated in three ways: radiation-neglected, optically thin, and using a nongrey radiation model. When keeping the oxygen content and methane fraction constant, CO2 dilution in the air-side has the most profound influence on NO reduction, and CO2 dilution in the fuel-side has the least. H2O dilution showed a medium impact with a larger degree on air-side than that on fuel-side. To gain a deeper understanding of this effect order, the contributions of different NO formation routes were quantified, and analyses were made based on the diluents’ chemical and thermal effects. It was found that the oxidizer-side dilution and fuel-side dilution affect the NO formation pathway similarly. Still, the influence of H2O dilution on the NO formation pathway differs from that of CO2 dilution.

Journal of Combustion
 Journal metrics
Acceptance rate21%
Submission to final decision67 days
Acceptance to publication29 days
CiteScore2.900
Journal Citation Indicator0.200
Impact Factor-
 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.