Material Design & Processing Communications
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics

Metrics will be available once more articles are published.

Submit your research today

Material Design & Processing Communications is now open for submissions

Read our author guidelines

 Journal profile

Material Design & Processing Communications seeks to spread and promote materials research advancing the understanding and applicability of novel design methodologies, production technologies, and failure prediction models technologies.

 Editor spotlight

Chief Editor, Professor Filippo Berto, is International Chair of Fatigue and Fracture at the Norwegian University of Science and Technology, Norway. His research focusses on the applications of structural integrity.

 Abstracting and Indexing

This journal's articles appear in a wide range of abstracting and indexing databases, and are covered by numerous other services that aid discovery and access. Find out more about where and how the content of this journal is available.

Latest Articles

More articles
Research Article

Reduced Coefficient of Friction of Laser Surface Hardened AISI 4130 Steel Substrates

AISI 4130 steels have been used in several engineering applications, although presenting limited hardenability in conventional heat treatments. This contribution is aimed at determining the final hardness and reciprocating wear coefficient of friction (COF) after a given laser surface treatment (LST) with or without a carbon coating (C). The results indicated that the bare (B, without coating) condition produced a deeper case depth as a result of the carbon-rich plasma shielding. The observed microstructural features in the cases B and C showed martensite transformation and cementite formation; the latter is entirely in the C condition. Simple calculations using Rosenthal’s formalism indicate a high cooling rate, estimated as 32280°C/s 40 μm below the irradiated surface and a heat-affected zone bounded by the austenite locus. The hardness near to the surface was higher in case C than in case B, but the overall final hardness is more pronounced when the surface is bare (B) due to plasma shielding. On the other hand, the final COF was very low in the C case (0.1) compared to the B condition (0.6).

Research Article

Cerium Bromide Single-Crystal X-Ray Detection and Spectral Compatibility Assessment with Various Optical Sensors

Scintillators with high light yield (LY) values are of interest for medical imaging applications, in harsh environments, nondestructive testing (NDT), etc. CeBr3 has a LY of 60000 photons per MeV, a value much higher than other efficient materials, such as Lu3Al5O12:Ce (25000 photons/MeV); thus, its X-ray detection properties would be of interest to be examined for medical imaging applications. The X-ray detection and absorption properties of a single crystal CeBr3 sample along with the compatibility of its produced light with various optoelectronic sensors were examined. In this study, the quantum detection (QDE) and the energy absorption efficiency (EAE) of CeBr3 were calculated. The findings were compared with data for Lu3Al5O12:Ce and CaF2:Eu single crystals. The measured optical spectrum produced by CeBr3 was well correlated with the spectral response of commercial optical sensors, yielding spectral matching higher than 93% for various photocathodes, e.g., GaAs (94%), E-S20 (95%), and bialkali and multialkali (95-97%), as well as with flat panel position-sensitive photomultipliers (95-99%). The energy absorption properties of CeBr3 were found higher than those of Lu3Al5O12:Ce and CaF2:Eu for X-ray tube voltages greater than 100 kVp. The quantum detection efficiency was 100% across the examined energy range. Even though CeBr3 is hygroscopic and has a mediocre 5.1 g/cm3 density, the QDE, EAE, and spectral correlation results are promising for medical imaging applications.

Research Article

On the Effect of the Stress Ratio on Fatigue Properties of Ti-6Al-4V Produced by Laser Powder Bed Fusion

Fatigue life estimation of Ti-6Al-4V parts produced by additive manufacturing (AM) technologies has received increasing interest during the last decade. Recent studies focused mostly on the fatigue performance of Ti-6Al-4V considering a fixed stress ratio (), usually 0.1 or −1. However, in order to properly design structural components subjected to variable loads, the effect of different stress ratios on the fatigue performance has to be carefully investigated. This research studies the stress ratio influence on the fatigue properties of Ti-6Al-4V specimens produced by laser powder bed fusion (L-PBF). Miniaturized Ti-6Al-4V samples were tested with the step procedure for different values. A constant life Haigh's diagram ( cycles) was generated for L-PBF Ti-6Al-4V in as-built, electro-polished, and machined surface condition. The results present for the first time the relations between alternating and mean stresses for L-PBF Ti-6Al-4V with a fine microstructure when different surface posttreatments are used to enhance the coupons’ final surface quality.

Material Design & Processing Communications
Publishing Collaboration
More info
Wiley Hindawi logo
 Journal metrics

Metrics will be available once more articles are published.

 Submit

Article of the Year Award: Outstanding research contributions of 2020, as selected by our Chief Editors. Read the winning articles.